281 research outputs found

    Could Grover's quantum algorithm help in searching an actual database?

    Full text link
    I investigate whether it would technologically and economically make sense to build database search engines based on Grover's quantum search algorithm. The answer is not fully conclusive but in my judgement rather negative.Comment: 7 pages, LaTe

    Encoding a Qubit into a Cavity Mode in Circuit-QED using Phase Estimation

    Full text link
    Gottesman, Kitaev and Preskill have formulated a way of encoding a qubit into an oscillator such that the qubit is protected against small shifts (translations) in phase space. The idea underlying this encoding is that error processes of low rate can be expanded into small shift errors. The qubit space is defined as an eigenspace of two mutually commuting displacement operators SpS_p and SqS_q which act as large shifts/translations in phase space. We propose and analyze the approximate creation of these qubit states by coupling the oscillator to a sequence of ancilla qubits. This preparation of the states uses the idea of phase estimation where the phase of the displacement operator, say SpS_p, is approximately determined. We consider several possible forms of phase estimation. We analyze the performance of repeated and adapative phase estimation as the simplest and experimentally most viable schemes given a realistic upper-limit on the number of photons in the oscillator. We propose a detailed physical implementation of this protocol using the dispersive coupling between a transmon ancilla qubit and a cavity mode in circuit-QED. We provide an estimate that in a current experimental set-up one can prepare a good code state from a squeezed vacuum state using 88 rounds of adapative phase estimation, lasting in total about 4μ4 \mu sec., with 94%94\% (heralded) chance of success.Comment: 24 pages, 15 figures. Some minor improvements to text and figures. Some of the numerical data has been replaced by more accurate simulations. The improved simulation shows that the code performs better than originally anticipate

    Strong Monogamy of Bipartite and Genuine Multipartite Entanglement: The Gaussian Case

    Full text link
    We demonstrate the existence of general constraints on distributed quantum correlations, which impose a trade-off on bipartite and multipartite entanglement at once. For all N-mode Gaussian states under permutation invariance, we establish exactly a monogamy inequality, stronger than the traditional one, that by recursion defines a proper measure of genuine N-partite entanglement. Strong monogamy holds as well for subsystems of arbitrary size, and the emerging multipartite entanglement measure is found to be scale invariant. We unveil its operational connection with the optimal fidelity of continuous variable teleportation networks.Comment: 4 pages, 2 figures. Final version, published in PR

    Simulating quantum computation by contracting tensor networks

    Full text link
    The treewidth of a graph is a useful combinatorial measure of how close the graph is to a tree. We prove that a quantum circuit with TT gates whose underlying graph has treewidth dd can be simulated deterministically in TO(1)exp[O(d)]T^{O(1)}\exp[O(d)] time, which, in particular, is polynomial in TT if d=O(logT)d=O(\log T). Among many implications, we show efficient simulations for log-depth circuits whose gates apply to nearby qubits only, a natural constraint satisfied by most physical implementations. We also show that one-way quantum computation of Raussendorf and Briegel (Physical Review Letters, 86:5188--5191, 2001), a universal quantum computation scheme with promising physical implementations, can be efficiently simulated by a randomized algorithm if its quantum resource is derived from a small-treewidth graph.Comment: 7 figure

    Dispersive Qubit Measurement by Interferometry with Parametric Amplifiers

    Get PDF
    We perform a detailed analysis of how an amplified interferometer can be used to enhance the quality of a dispersive qubit measurement, such as one performed on a superconducting transmon qubit, using homodyne detection on an amplified microwave signal. Our modeling makes a realistic assessment of what is possible in current circuit-QED experiments; in particular, we take into account the frequency-dependence of the qubit-induced phase shift for short microwaves pulses. We compare the possible signal-to-noise ratios obtainable with (single-mode) SU(1,1) interferometers with the current coherent measurement and find a considerable reduction in measurement error probability in an experimentally-accessible range of parameters

    Detecting entanglement using a double quantum dot turnstile

    Full text link
    We propose a scheme based on using the singlet ground state of an electron spin pair in a double quantum dot nanostructure as a suitable set-up for detecting entanglement between electron spins via the measurement of an optimal entanglement witness. Using time-dependent gate voltages and magnetic fields the entangled spins are separated and coherently rotated in the quantum dots and subsequently detected at spin-polarized quantum point contacts. We analyze the coherent time evolution of the entangled pair and show that by counting coincidences in the four exits an entanglement test can be done. This set-up is close to present-day experimental possibilities and can be used to produce pairs of entangled electrons ``on demand''.Comment: 5 pages, 2 figures - published versio

    Simulating quantum operations with mixed environments

    Get PDF
    We study the physical resources required to implement general quantum operations, and provide new bounds on the minimum possible size which an environment must be in order to perform certain quantum operations. We prove that contrary to a previous conjecture, not all quantum operations on a single-qubit can be implemented with a single-qubit environment, even if that environment is initially prepared in a mixed state. We show that a mixed single-qutrit environment is sufficient to implement a special class of operations, the generalized depolarizing channels.Comment: 4 pages Revtex + 1 fig, pictures at http://stout.physics.ucla.edu/~smolin/tetrahedron .Several small correction

    Classical simulation of quantum many-body systems with a tree tensor network

    Get PDF
    We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement is bounded for any bipartite split along an edge of the tree. This is achieved by expanding the {\em time-evolving block decimation} simulation algorithm for time evolution from a one dimensional lattice to a tree graph, while replacing a {\em matrix product state} with a {\em tree tensor network}. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.Comment: 4 pages,7 figure
    corecore